Dynamic multi-objective optimization algorithm based decomposition and preference

نویسندگان

چکیده

Most of the existing dynamic multi-objective evolutionary algorithms (DMOEAs) are effective, which focuses on searching for approximation Pareto-optimal front (POF) with well-distributed in handling optimization problems (DMOPs). Nevertheless, real-world scenarios, decision maker (DM) may be only interested a portion corresponding POF (i.e., region interest) different instances, rather than whole POF. Consequently, novel DMOEA based decomposition and preference (DACP) is proposed, incorporates DM into search process tracks subset set (POS) respect to interest (ROI). Due presence dynamics, ROI, defined gives both point neighborhood size, changing time-varying DMOPs. our algorithm moves reference points, located range, around lead evolution population. When change occurs, strategy performed responding current change. Particularly, population will reinitialized according promising direction obtained by letting few solutions evolve independently short time. Comprehensive experiments show that this approach very competitivecompared state-of-the-art methods.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Preference-Based Evolutionary Algorithm for Multi-Objective Optimization

In this paper, we discuss the idea of incorporating preference information into evolutionary multi-objective optimization and propose a preference-based evolutionary approach that can be used as an integral part of an interactive algorithm. One algorithm is proposed in the paper. At each iteration, the decision maker is asked to give preference information in terms of his or her reference point...

متن کامل

MOEICA: Enhanced multi-objective optimization based on imperialist competitive algorithm

In this paper, a multi-objective enhanced imperialist competitive algorithm (MOEICA) is presented. The main structures of the original ICA are employed while some novel approaches are also developed. Other than the non-dominated sorting and crowding distance methods which are used as the main tools for comparing and ranking solutions, an auxiliary comparison approach called fuzzy possession is ...

متن کامل

Multi-objective Grasshopper Optimization Algorithm based Reconfiguration of Distribution Networks

Network reconfiguration is a nonlinear optimization procedure which calculates a radial structure to optimize the power losses and improve the network reliability index while meeting practical constraints. In this paper, a multi-objective framework is proposed for optimal network reconfiguration with the objective functions of minimization of power losses and improvement of reliability index. T...

متن کامل

Multi-strategy ensemble evolutionary algorithm for dynamic multi-objective optimization

Dynamic optimization and multi-objective optimization have separately gained increasing attention from the research community during the last decade. However, few studies have been reported on dynamic multi-objective optimization (dMO) and scarce effective dMO methods have been proposed. In this paper, we fulfill these gabs by developing new dMO test problems and new effective dMO algorithm. In...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Information Sciences

سال: 2021

ISSN: ['0020-0255', '1872-6291']

DOI: https://doi.org/10.1016/j.ins.2021.04.055